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Abstract— This paper describes a learning-based strategy
for selecting conflict avoidance maneuvers for autonomous un-
manned aircraft systems. The selected maneuvers are provided
by a formally verified algorithm and they are guaranteed
to solve any impending conflict under general assumptions
about aircraft dynamics. The decision-making logic that selects
the appropriate maneuvers is encoded in a stochastic policy
encapsulated as a neural network. The network’s parameters
are optimized to maximize a reward function. The reward
function penalizes loss of separation with other aircraft while
rewarding resolutions that result in minimum excursions from
the nominal flight plan. This paper provides a description of
the technique and presents preliminary simulation results.

I. INTRODUCTION

Formal methods for safety critical software has become the
focus of many research efforts seeking increased reliability
and ultimately more efficient regulatory acceptance of au-
tonomous systems. Despite the enormous progress in formal
verification techniques, compliance with Federal Aviation
Regulations for the certification of safety critical software is
still achieved by evidence from extensive testing, simulation,
and flight tests. Although testing and simulation play a
crucial role in the certification of critical flight software,
formal verification of the software logic can eliminate non-
trivial logic errors and also, coupled with modular software
design, help cut down the maintenance cost of flight software
development.

The Prototype Verification System (PVS) [1] was used
to formally verify the logical correctness of the De-
tect and Avoid Alerting Logic for Unmanned Systems
(DAIDALUS) [2], [3]. DAIDALUS is a software library that
serves as a reference implementation of the detect and avoid
(DAA) concept described in the RTCA DO-365 Minimum
Operational Performance Standards for Unmanned Aircraft
Systems [4]. DAIDALUS source code is available in both
C++ and Java under NASAs Open Source Agreement. The
DAIDALUS software library consists of algorithms that
predict “well-clear” violations (as defined in RTCA DO 365)
between between aircraft and provide maneuver guidance to
the pilot in command in the form of maneuver ranges.

DAIDALUS was originally designed as an advisory tool
for the pilot in command of an Unmanned Aircraft System
(UAS). DAIDALUS provides four main types of guidance
resolutions to avoid loss of separation of an ownship with
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near aircraft in the airspace: track, ground-speed, vertical-
speed, and altitude resolutions. The DAA MOPS stipulates
that, it is the responsibility of the pilot in command to
choose an appropriate resolution maneuver among the four
types of resolutions provided and execute it according to the
established rules and procedures. The potential introduction
of large number of small unmanned vehicles operating at
low altitudes introduced a new set of technical challenges
that may impede a pilot or operator to execute DAA tasks
in a timely of effective manner. Additionally, pilot-vehicle
communication challenges at low altitudes are likely to
experience interruptions that can prevent a pilot initiation
of conflict avoidance actions. Hence, the implementation of
on board capabilities to enable varying degrees of mission
and separation autonomy may be required for autonomous
UAS operations.

In this context, the ability to autonomously select a single
avoidance maneuver from the DAIDALUS resolution ranges
would relieve the need for a human in charge of that
selection. This capability can be incorporated in different
operational concepts with varying degrees of autonomy,
where the execution of the avoidance maneuver could be op-
erators responsibility or part of a fully autonomous capability
such as ICAROUS (Independent Configurable Architecture
for Reliable Operations of Unmanned Systems) [5], [6].
ICAROUS comprises a set of core algorithms for path
planning, geofence handling, traffic avoidance and decision
making to enable autonomous operations of UAS.

This paper develops a Reinforcement Learning (RL)
framework for DAIDALUS. In this framework, DAIDALUS
provides ranges of collision resolution maneuvers whose
bounds (e.g., target heading, ground speed, altitude, climb
rate) are determined by its formally verified deterministic
algorithm based on a geometric model. The policy obtained
using this RL framework is then used to select an optimal
resolution maneuver with respect to a given reward function.
Since the learning mechanism only operates on formally
verified resolutions, the formal properties of the DAIDALUS
algorithm are preserved and safety of the UAS is ensured.

The rest of this paper is organized as follows. Section II
highlights several relevant areas of research related to the
use of formally assured sense and avoid algorithms. Section
III provides background information about the various tools
and algorithms used in this work. Section IV details the
learning framework, the reward formulation and the training
mechanism. Section V presents the results of the described
learning framework. Section VI provides concluding remarks
and discusses future work.



II. RELATED WORK

The Traffic Alert and Collision Avoidance System (TCAS)
is a family of airborne devices that are designed to reduce
the risk of mid-air collisions between aircraft equipped
with operating transponders [7]. TCAS has evolved through
extensive development and a number of versions since its
initial operational evaluation in 1982. TCAS II, the current
generation of TCAS devices, is mandated in the US for
aircraft with greater than 30 seats or a maximum takeoff
weight greater than 33,000 pounds. The formal verification
of TCAS logic first appeared in a paper by Lygeros and
Lynch [8].

The Advanced Collision Avoidance System (ACAS-X)
[9], the next generation of collision avoidance algorithms
was developed with a goal of improving TCAS performance
and reliability. Unlike TCAS, ACAS-X uses a model-based
decision-theoretic framework where traffic resolutions and
advisories are optimized using a reward function taking into
account the encounter dynamics. However, the use of a
decision-theoretic framework introduces multi-dimensional
lookup tables thus making verification and validation a
challenging task. Verification and validation of ACAS-X
resolutions is an ongoing research activity [10]. An adap-
tation of ACAS-X for small UAS called ACAS-Xu is in
development [11].

Unlike ACAS-X, the present work does not directly at-
tempt to optimize traffic resolutions using a reward func-
tion. Instead, different types of resolution maneuvers (i.e.,
track, ground speed, vertical speed, and altitude) required
to maintain well clear are first determined by analytical
algorithms that are formally verified in PVS. Subsequently,
the selection of a suitable resolution from the set of formally
verified resolutions is obtained using a learning mechanism
thus preserving the formal properties of the DAIDALUS
algorithm, i.e., the selected maneuver is conflict free and
satisfies the specified mission constraints.

III. BACKGROUND

A. DAIDALUS

DAIDALUS (Detect and AvoID Alerting Logic for Un-
manned Systems) is a software implementation intended to
satisfy the operational and functional requirements detailed
in NASA’s DAA concept of integration for UAS [2]. In
particular, DAIDALUS provides algorithms for three distinct
functionalities: 1) detection: determines the current, pairwise
well-clear status of the ownship and all aircraft inside its
surveillance range, 2) manuever guidance: computes ranges
of maneuvers that a pilot-in-command (PIC) may take
that will either cause the aircraft to maintain or increase
separation from the well-clear violation volume, or allow
for recovery from loss of separation in a timely manner
within the performance limits of the ownship aircraft, and
3) alerting: determines the corresponding alert type, based
on a given alerting schema.

Fig. 1: DAIDALUS sense and avoid

B. ICAROUS

ICAROUS (Independent Configurable Architecture for
Reliable Operations of Unmanned Systems) [5], [6], [12] is
a distributed software architecture designed to provide UAS
with decision making capabilities to operate autonomously.
The core functionalities include maintaining safe separation
with other intruders in the airspace, conforming to geospatial
airspace constraints (keep-in/keep-out geofences), avoiding
obstacles and performing route planning when alternate
flight routes are essential to accomplish mission goals (path
planning). This work specifically focuses on the sense and
avoid functionality of ICAROUS which uses the DAIDALUS
library described above for conflict detection and maneuver
guidance. Given the position and velocity of the ownship and
any intruders in the airspace, DAIDALUS provides maneuver
guidance in the form of conflict-free ranges of track, speed,
altitude and vertical speed resolutions from where the path
planning functions in ICAROUS selects one maneuver for
execution by the autopilot. In addition, the path planning
function computes a ”return to path” maneuver to enable the
ownship to return to the original mission after the conflict
has been resolved. This maneuver is also free of conflicts
and compliant with mission constraints. Since the resolutions
provided by DAIDALUS are not aware of mission constraints
such as geofences, obstacles, and path deviation constraints,
ICAROUS has to select a resolution that is optimal for the
current mission. Currently, ICAROUS does this by selecting
a user defined default resolution for all cases.

One of the main advantages of using a modular design
in ICAROUS with publish-subscribe architecture is that it
preserves the properties of formally verified modules. In
particular, any single maneuver selected from the maneuver
guidance ranges computed by DAIDALUS is guaranteed to
be conflict free and correct regardless of the selection logic.
However, an optimizing selection technique may introduce



Fig. 2: ICAROUS architecture

non-deterministic behaviors such as non-convergence. The
impact of these behaviors need to be understood before they
are incorporated in safety critical applications.

C. Reinforcement learning

Reinforcement learning (RL) [13] is a paradigm where
an agent, operating in an unknown environment, learns
to achieve a specific goal by taking repeated actions and
evaluating the outcomes of each actions. A utility function is
used to evaluate each action from a given state thus providing
feedback on how useful a given action is when executed from
that specific state to achieve the goal at hand. By selecting
only the actions that provide maximum utility, the agent can
achieve its goal. More formally, a reinforcement learning
agent can be described by the tuple (S,A,R, γ), where S
represents the state space of the agent, A represents the set
of available actions, R represents the utility function, and γ
represents the discount factor (γ ∈ [0, 1].) The utility of a
given state is defined as the expected discounted cumulative
reward. The discount factor determines the tradeoff between
immediate rewards over future rewards in the utility function.
Given a current state st ∈ S, the agent selects action at ∈ A
according to a policy π. On executing the action, the agent
transitions to the next state and receives a reward rt. Due to
the uncertainty in the environment and possible outcomes of
the available actions, this transition is stochastic. The agent
continues to accumulate rewards by continuing this process
until it either reaches a goal or a failure state. Reinforcement
learning tries to converge on an optimal policy, i.e., one
that maximizes the expected discounted cumulative reward
(Equation (1)) the agent receives. Note that E denotes the
expectation and R denotes the reward received at the current
time step. In this work, learning is done without any prior
knowlege of the uncertainty associated with the environment
or the state transitions.

R = E
( t=N∑

t=0

γtR(st, at)
)

(1)

IV. LEARNING OPTIMAL SAA RESOLUTIONS IN
ICAROUS

In this paper, an RL agent is integrated into ICAROUS
to learn the optimal resolution from the various types of
resolutions provided by DAIDALUS, namely track, ground
speed, altitude, and vertical speed resolution. The optimality
criteria is discussed in Section IV-C.

A. State and Action Space Formulation

The state space (s) of the RL agent consists of the relative
position (~pr) and velocity (~vr) of the intruder with respect
to the ownship:

s = [~pr, ~vr] ∈ R6 (2)
~pr = ~pi − ~po (3)
~vr = ~vi − ~vo (4)

where ~pi and ~vi are the 3-D position and velocity of the
intruder and ~po and ~vo are the 3-D position and velocity of
the ownship.
The action space (a) of the RL agent consists of the types
of resolution obtained from DAIDALUS:

a = {at, as, ah, av} (5)

where at, as, ah, av represent the track, ground speed,
altitude and vertical speed resolutions respectively. Track
and ground speed represent resolutions in the horizontal di-
mension (x-y), whereas altitude and vertical speed represent
resolutions in the vertical dimension (z).

B. Policy Parameterization

The policy π(θ) : s → a that assigns a suitable action
for every given state is parameterized by θ ∈ Rn. In this
framework, θ represents the weights and biases of a fully
connected neural network. The neural network is comprised
of an input layer with six nodes corresponding to the
dimension of the state space, two hidden layers with twenty
nodes each, and a softmax (Equation 6) output layer [14]
consisting of four nodes corresponding to the dimension of
the action space (Equation (5)). The hidden layers all use the
Rectified Linear Unit (ReLU) activation function (Equation
7) [14]. The output layer provides a probability distribution
over the action space, and the weights of the network
(the parameters of the policy) are chosen to maximize the
cumulative discounted reward.

σ(z) =
ezi∑K
j=1 e

zj
for i=1,. . . ,K and z ∈ RK (6)

f(x) = max(0, x) (7)



C. Reward Formulation

The utility function used to guide learning is crafted
to encapsulate the properties of an optimal resolution. An
optimal resolution is considered to be one that:

1) Minimizes Severity of Loss of Well-Clear (SLoWC).
SLoWC is a metric used to assess the most serious
instance of LoWC in an encounter and is defined at
each time step by Equation (8).

SLoWC = (1− RangePen⊕ HMDPen
⊕VertPen)× 100% (8)

where the operator ⊕ is defined as:

x⊕ y ≡
√
x2 + (1− x)2y2 (9)

and RangePen, HMDPen, VertPen are defined
in [4].

2) Minimizes Path Deviation.
Path Deviation = hd + vd, i.e., the sum of the
horizontal (hd) and vertical (vd) cross track deviations
from the flight plan segment between points A and B
(Figure 3), which can be defined as:

~rAB = B −A
~rAO = ~po −A
hd = |~rAO· ⊥ ~rAB |

vd =
∣∣∣rzAO

− rzAB

(rxAO
· rxAB

+ ryAO
· ryAB

||~rAB ||

)∣∣∣
where ⊥ ~rAB represents the perpendicular to ~rAB ,
rx, ry, rz represent the components of the ~r, and
hd, vd represent the magnitude of the horizontal and
vertical deviations from the flight plan segment AB.

3) Reaches the destination waypoint.
Taking dc as the radius within which the vehicle is con-
sidered to be at waypoint B, reaching the destination
can be defined by the function:

Reached =

{
0 ||po −B|| > dc

1 otherwise
(10)

In order to satisfy these optimality criteria, the reward
function is defined as follows.

RSLoWC = max
t<T

(SLoWC)

Rpathdev = max
t<T

(Path Deviation)

Rreach = Reached

R = α1RSLoWC + α2Rpathdev + α3Rreach (11)

where, t represents the simulation time step for a given
episode and T represents the total duration of the episode.

The weights α1, α2, α3 are chosen to emphasize the rel-
ative importance of the individual reward. Negative rewards
become penalties. The values α1 and α2 < 0 are constrained
so that high values of SoLWC and Path Deviation are

penalized, and α3 > 0 so that reaching the destination is
rewarded. Specifically, the following values are considered
α1 = −2000, α2 = −1000, α3 = 1000.

D. Learning

A simulation environment is set up where the ICAROUS
software architecture can interact with a simulated ownship
and intruder traffic vehicle. The ownship is set up to follow
a flight plan segment between two waypoints. The intruder’s
initial condition is defined by the range, bearing, and altitude
from the ownship along with its ground speed, heading, and
vertical speed. The intruder’s initial conditions are sampled
such that a loss of separation (well-clear violation) is bound
to happen at a predetermined point on the ownship’s flight
path segment. A single simulation, or trial, is run by sampling
an initial condition for the intruder that could result in a well-
clear violation for the ownship at some point along its flight
path. A trial is said to be complete when the ownship reaches
the destination waypoint. In case the ownship does not reach
the final destination, the trial is considered complete after a
predefined amount of time.

When a conflict occurs, the relative positions and veloci-
ties between the intruder and ownship are used to query the
network described in Policy Parameterization (Sec. IV-B).
The network in turn outputs a distribution over the actions.
An action is sampled according to this distribution and
executed to resolve the well-clear conflict. The position and
velocities of the intruder are recorded for each trial. At the
end of each trial, the reward function described in Sec. IV-C
can be used to compute the effectiveness of the resolution. In
this work, the reward functions are defined as terminal reward
values, i.e., only received after each trial. Consequently, the
cumulative reward is given by Equation (11). The discount
factor γ is set to 1.

The data collected from running a batch of trials are then
used to adjust the weights of the network. The training error
of the network is defined by the cross-entropy loss:

loss = −
N∑
i=0

ai log(pi)Ri, (12)

where N represents the number of trials in a given batch,
ai represents the action that was selected in ith trial and pi
represents the probability of action a predicted by the neural
network in the the ith trial. Ri represents the cumulative
reward obtained in the ith trial. The gradient of the above
loss function ensures that the network weights are adjusted
so that actions that lead to higher cumulative rewards become
more likely consequently reducing the probability of actions
that lead to lower cumulative rewards. Training is repeated
for several batches until the average cumulative reward for
a given batch is above a desired threshold.

V. RESULTS

To illustrate the effectiveness of the reinforcement frame-
work described in the previous section, a subset of initial
conditions that result in loss of separation are selected. Figure



Fig. 3: Set Up for simulating encounters

3 illustrates the parameters that govern the sampling of
these initial conditions. The intruder’s range and bearing are
chosen such that it reaches some point P on line OC when
the ownship is at point O. Point P is selected to lie within
a distance of the well-clear volume radius. This ensures
that a loss of separation happens when the ownship is at
O (assuming no resolutions are executed). The distance OP
is referred to as the intercept distance yp, and the angle ψ
represents the heading of the intruder. In this setting, the
ownship is always flying from point A to B, i.e., at a track
angle of 90 degree relative to true north. Initial conditions
for the intruder are chosen based on the randomly sampled
values for ψ and yp. When yp = 0, a perfect collision occurs
regardless of the intruder’s track. yp 6= 0 and ψ = 90 or
ψ = 270 represent intruder flight paths that are parallel to
the ownship flight path. For the purpose of illustration, a
cylindrical well-clear volume of radius 20m and height 5m
is selected.

Although using a single policy π to capture policy varia-
tions across the entire input space may be possible by em-
ploying an appropriate network architecture, for the purpose
of illustration, however, the input space is partitioned into
several subsets such that each subset is associated with a
corresponding policy, resulting in a multi-parameter policy.
This approach is akin to the idea of gain scheduling of flight
controller gains in typical autopilot design.

Figure 4 illustrates the policy’s prediction for initial con-
ditions generated by sampling the two parameters ψ and yp.
Initial conditions resulting from yp < 15m are governed by
policy π1 and yp > 15m are governed by π2.

When yp < 15m, speed resolutions are favored by π1 for
ψ ∈ [90, 220]. According to Equation (11), speed resolutions
yield the highest reward in this regime because it is possible
to avoid loss of separation while avoiding any flight plan
deviations. However, when ψ ∈ [220, 270] (i.e., roughly
head-on encounter geometries), this results in encounters
where the intruder encroaches into the well-clear volume of
the ownship regardless of any changes in speed prescribed
by the speed resolution. Consequently, the policy π1 favors
vertical resolutions (altitude or vertical speed). According

Fig. 4: Network outputs

to Equation (11), track resolutions executed in this regime
results in larger deviations from the flight plan compared to
altitude resolutions, making them less favorable than vertical
resolutions.

When yp > 15m, track resolutions become more favorable
for head on encounters according to π2. In this regime,
separation from the intruder is facilitated by minimal devi-
ation from the flight plan using track resolutions. Although
vertical resolutions would enable well-clear separation, these
resolutions result in larger deviations from the flight plan in
this regime.

The policy learned by the RL framework described in
this work depends on the well-clear configuration parameters
used by the detection logic in DAIDALUS. The well-clear
parameters determine the size of the well-clear volume, the
look ahead time, the vehicle maneuvering characteristics etc.
Thus the policy should be determined using a well-clear
configuration appropriate for the ownship and the mission.

VI. CONCLUSIONS

This paper illustrated the use of a Reinforcement Learning
framework within the context of the ICAROUS architec-
ture to select traffic avoidance options that satisfy mission
specific optimization goals. This RL framework is used to
compute a policy that would enable a UAS to autonomously
select a suitable resolution from different types of resolu-
tions prescribed by the Sense and Avoid algorithm called
DAIDALUS. The policy learned by the RL framework pro-
posed in this paper would prevent a well-clear violation while
ensuring mission progress and minimum deviation from the
flight plan. Furthermore, this method preserves the formal
properties of each resolution guaranteed by DAIDALUS.

This work parameterized the RL policy to select an SAA
resolution using fully connected neural networks. The input
space was partitioned into subsets such that each subset
was associated with a policy resulting in a database of
policies - each optimized to select the optimal resolution
for its input space. Results, as shown in Figure 4, indicate



sensible resolutions consistent with the reward formulation in
Equation (11). This multiple policy approach helps capture
variations in resolutions across a given input space more
efficiently than a single policy would have. Alternately, other
methods such as Support Vector Machines (SVM) could also
be used to parameterize the policy, which remains an area
of future investigation.

The RL formulation described in this work focused on
policies for a single intruder whose current state could
result in a loss of separation. Increasing the number of
intruders that the policy can handle, although possible, can
be computationally expensive.
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[5] M. Consiglio, C. Muñoz, G. Hagen, A. Narkawicz, and S. Bal-
achandran, “Icarous: Integrated configurable algorithms for reliable
operations of unmanned systems,” in 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC). IEEE, 2016, pp. 1–5.

[6] S. Balachandran, C. Muñoz, M. Consiglio, M. Feliú, and A. Patel, “In-
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“Sense and avoid characterization of the independent configurable
architecture for reliable operations of unmanned systems,” in Proceed-
ings of the 13th USA/Europe Air Traffic Management R&D Seminar,
ATM 2019, 2019.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[14] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.


